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The paper continues theoretical studying the heat and mass transfer in the biporous material with the
coupled phase transformations. The fine-pored part of the medium is saturated by electrolytic solution
and has osmotic and electroosmotic properties. Ice is contained in coarse pores.

At the low solution concentration the electric polarization of the medium induced by the temperature
gradient may be up to 1 V/K.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Freezing the fine-grained soils leads to the redistribution of the
medium components, formation of the cryogenic structures, and
appearance of the electrical potential difference between the fro-
zen and unfrozen soils [1,2]. The source of all changes locates in
the transition region (‘‘frozen fringe”) of the medium, which con-
tains ice and adequate quantity of liquid phase. The system studied
(Fig. 1) may be considered as the simplest model of the frozen
fringe [3].

Heat and mass exchange in the similar media is accompanied
by the ice movement relative to the mineral component and has
some distinctive features.

It is well known, that the phase transition temperature of solid–
liquid in confined space falls with decreasing the cavity size [4].
Therefore the temperature region of the system existence is lim-
ited by the melting temperature of the bulk ice and the freezing-
point of water into the fine-pored medium.

In the previous paper it was supposed that the liquid movement
through the fine-pored element of the biporous medium (Fig. 1) is
subjected to Darcy’s law. This assumption is valid for relatively
macroporous bodies. In that case, the temperature region of exis-
tence is less than tenth parts of a degree. In practice that interval
may be considerably greater. For example, the freezing-point of
water in clays may be on a degree of Celsius below that of bulk
ll rights reserved.
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water. In this case, the liquid flow through the fine-pored medium
is subjected to more complicated law [5].

A purpose of the presented paper is studying the features of the
heat and mass transfer through the biporous medium with ice
inclusion, the fine-pored part of that has osmotic and electroos-
motic properties.

2. Problem statement

Consider the unidimensional stationary process of the heat and
mass transfer through the specific biporous medium (Fig. 1). De-
tailed specification of its properties is given earlier [6]. Here, it will
be presented major ones. The fine-pored medium ðE2Þ is saturated
by binary solution of strong electrolyte. Elements of E1 and E2 are
homogeneous and isotropic. Framework of the porous medium is
rigid, does not react with solute matter. Ice rejects all foreign mat-
ter. The fine-pored medium has osmotic and electroosmotic prop-
erties. Thermodynamic conditions forbid ice from penetrating in
element E2.

The ice inclusion may move relative to framework of the porous
medium. That movement is realized due to regelation and is
accompanied by the coupled phase transitions of melting–freezing.

Heat and mass problem for the medium as whole is reduced to
the similar problem for a separate cell (Fig. 2).

2.1. Heat and mass transfer equations

Fix the system co-ordinate to the mineral framework of the
medium. Neglecting the convective transport of energy the
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Nomenclature

b height of the cell [m], Fig. 2
C transport coefficient
ck amount concentration of k-ion ½mol m�3�
cs amount concentration of solution ½mol m�3�
cs0 average amount concentration ½mol m�3�
Dk diffusion coefficient of k-ion ½m2 s�1�
e elementary charge, e ¼ 1:602 � 10�19 C
F Faraday constant, F = 96,484 [C mol�1]
Je current density across the base of the cell ½A m�2�
Jq heat flow across the base of the cell [W m�2]
Js molar solute flow across the base of the cell

½mol m�2 s�1�
JV volume flow across the base of the cell ½m s�1�
Jw molar flow of water across the base of the cell

½mol m�2 s�1�
je current density [A m�2]
jk molar flux of k-ion ½mol m�2 s�1�
jq heat flux ½W m�2�
js molar solute flux ½mol m�2 s�1�
jV volume flux ½m s�1�
jw molar water flux ½mol m�2 s�1�
kB Boltzmann constant, kB ¼ 1:38 � 10�23 J K�1

Kh hydroconductivity coefficient of fine-pored medium
E2½m3 s kg�1�

n unit vector
p liquid pressure [Pa]
R radius of ice inclusion [m]
Rg gas constant, Rg ¼ 8:31 J K�1mol�1

Sa area of the cell base ½m2�, Fig. 2
T temperature [K]
T0 temperature of ice–water equilibrium at

105 Pa;T0 ¼ 273:15 K
uk electric mobility of k-ion ½m2 V�1 s�1�
Vi molar volume of ice ½m3 mol�1�
Vk partial molar volume of k-ion in solution ½m3 mol�1�
Vw partial molar volume of water in solution ½m3 mol�1�
vi velocity of ice ½m s�1�
X thermodynamical force
zk charge number of k-ion

Greek symbols
j latent heat of fusion ½J mol�1�
k1 thermal conductivity of ice ½W m�1 K�1�
k2 thermal conductivity of fine-pored medium

½W m�1 K�1�
Dk21 ¼ k2 � k1

l chemical potential ½J mol�1�
mk number of k-ion in a solute molecule

Subscripts
i ice
q heat
R surface of inclusion
s solute
w water

Dimensionless parameters
a ¼ pR2

Sa

b ¼ 2R
b

e2
t ¼

jDk21 ja
k2�Dk21a

e2
p ¼ a

1�a

et0 ¼ b k2
k1
� 1

� �

f 1 ¼
2et

ð1�e2
t Þ ln

1þet
1�et

��� ��� where Dk21 < 0

et
ð1þe2

t Þarctget
where Dk21 > 0

8><
>:

f t ¼
ð1�f 1Þ

½bþð1�bÞf 1 �
� ðe

2
t �1Þ
e2

t
where Dk21 < 0

ð1�f 1Þ
½bþð1�bÞf 1 �

� ðe
2
t þ1Þ
e2

t
where Dk21 > 0

8<
:

f q ¼
f 1

bþð1�bÞf 1

I3t ¼ 1
et0
� 2

e2
t0
þ 2

e3
t0

lnð1þ et0Þ

I4t ¼ 2
3et0
� 1

e2
t0
þ 2

e3
t0
� 2

e4
t0

lnð1þ et0Þ

Ik ¼ ð1� aÞ þ 2a
e2

t0
½et0 � lnð1þ et0Þ�

f 2 ¼
ep

ð1þe2
pÞarctgep

f p ¼
ð1�f 2Þð1þe2

pÞ
½bþð1�bÞf 2 �e2

p

f w ¼
f 2

bþð1�bÞf 2

I3e ¼ 1þ 2
b þ 2

b2 lnð1� bÞ

Ie ¼ 1� a� 2a
b2 ½bþ lnð1� bÞ�

Other symbols
r vector gradient operator
rb difference gradient operator, for example, rbT ¼ T2�T1

b
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temperature distribution in the elements of E1 and E2 is subjected
to Laplace’s equation:

DT ¼ 0 ð1Þ

The mass transfer equations will be given below in more detail.
Three constituents of solution are transferred through the element
E2.

Neglecting the thermoosmotic properties of the fine-pored
medium the matter fluxes depend linearly on the gradients of pres-
sure, concentration, and electrical potential:

jV ¼ kpprpþ kperuþ kpsrcs ð2Þ
je ¼ keprpþ keeruþ kesrcs ð3Þ
js ¼ ksprpþ kseruþ kssrcs ð4Þ
where kpp; kpe; . . . ; kss – transfer coefficients, those are not indepen-
dent. Relations between them follow from Onsager’s reciprocity
principle [7,6]:

kpe ¼ kep ð5Þ

ksp ¼ cs kpp � kpkpe �
Vw

cw
kps

� �
ð6Þ

kse ¼ cs kep � kpkee �
Vw

cw
kes

� �
ð7Þ

where kp is a parameter, cw ¼
@lw
@cs
;lw – chemical potential of water

in solution.
Express k-coefficients in terms of measurable values.
The solute molecules in the electrolyte solution dissociate into

ions, those interact with the mineral framework of porous medium
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Fig. 1. A fragment of the model porous medium. E1 – ice inclusion, E2 – fine-pored
medium.
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Fig. 2. Scheme of fluxes in an elementary cell. Qlat is heat production at the phase
transition surface.
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and form the double electrical layer near the interface. When liquid
flows through porous medium the ion velocity in the double
electrical layer is different from the velocity of ions in the remain-
der of the solution. If the double layer thickness is comparable with
the pore size then the average ion velocity is not equal to the
average velocity of the solution constituents even though the
gradients of electrical potential and solution concentration equal
zero. Introduce into consideration the entrainment factors
dk ðk ¼ 1;2Þ and write the transfer equation for ions in porous
medium as follows:

jk ¼ �ckukru� Dkrck þ dkckjV ; k ¼ 1;2 ð8Þ

In general case the values of Dk; uk differ from the corresponding
ones of the volumetric solution and must be received by special
measurements [8].

When d1 ¼ d2 ¼ 1 the relation (8) gives the known equation for
the ion movement in the volumetric electrolyte solution [9].

Assume, that the Einstein relation between the diffusion coeffi-
cient and the ionic mobility is valid for solution in porous media as
for the bulk one:

Dk

uk
¼ RgT

Fzk
; k ¼ 1;2

By definition the current density je and the molar solute flux js are
presented in terms of the molar fluxes of ions j1 and j2:

je ¼ ~z1j1 þ ~z2j2 ð9Þ
js ¼ v1j1 þ v2j2 ð10Þ
where ~zk ¼ Fzkðk ¼ 1;2Þ; v1 ¼
u2

m1ðu2�u1Þ
; v2 ¼

u1
m2ðu1�u2Þ

.
Let us write the volume flux jV in the general way having regard

to the osmotic and electroosmotic properties of porous medium:

jV ¼ �Khrp� Keruþ Kosrcs ð11Þ

In most cases the K-coefficients are positive [10]. That circumstance
determines choice of signs in Eq. (11).

The explicit form of the k-coefficients and the values of d1; d2; kp

are found from Eqs. (2)–(11) [11]:

kpp ¼ �Kh; kpe ¼ �Ke; kps ¼ Kos ð12Þ

kep ¼ �Ke; kee ¼ �csku �
K2

e

Kh
; kes ¼ �kD ð13Þ

ksp ¼ �csKh 1þ Vw

cw

Kos

Kh
� kpKe

Kh

� �
;

kse ¼ �csKe 1þ Vw

cw

Kos

Kh
� kpKe

Kh

� �
; kss ¼ �Dn ð14Þ

where kp ¼ � VwkD
cscwku

1þ KeKos
kDKh

� �
; Dn ¼ ðm1þm2ÞD1D2

m2D1þm1D2
; kD ¼ ~z1m1D1 þ ~z2m2D2;

ku ¼ ~z1m1u1 þ ~z2m2u2.
At the steady-state the conservation law for the solution con-

stituents has the simple form:

r � jw ¼ 0; r � jk ¼ 0; k ¼ 1;2 ð15Þ

where the flux jw is connected with the volume flux jV by the fol-
lowing definition:

jV ¼ V1j1 þ V2j2 þ Vwjw ð16Þ

The laws of transfer (2)–(4) and conservation of (15) together with
the definitions of (9), (10) and (16) allow to find the differential
equations for the thermodynamic potential p, cs, and u in the region
of E2 [11]. The equations and the boundary conditions turn out to be
complicated due to some of k-coefficients depend on the concentra-
tion cs. In the present paper the system will be considered near
equilibrium state. In this case the k-coefficients containing the va-
lue cs will be accepted as constants at the average concentration
of solution in the elementary cell (Fig. 2).

Linear transformations of the equation set (2)–(4), (9), (10),
(15), (16) lead to Laplace’s equations for the thermodynamic
potentials of p; cs, and u:

Dp ¼ 0; Du ¼ 0; Dcs ¼ 0; r 2 E2 ð17Þ

An equation for finding the electrical potential in the region of E1

(uniform dielectric) is also Laplace’s equation.

Du ¼ 0; r 2 E1 ð18Þ
2.2. Boundary conditions

At the cell bases the thermodynamic potentials are constants
(Fig. 2):

– lower surface ðz ¼ �b=2Þ:

T ¼ T1; p ¼ p1; cs ¼ cs1; u ¼ u1 ð19Þ

– upper surface ðz ¼ b=2Þ:

T ¼ T2; p ¼ p2; cs ¼ cs2; u ¼ u2 ð20Þ
Because of symmetry the fluxes through the lateral sides of the
cell are equal to zero:

dT
dl
¼ 0;

dp
dl
¼ 0;

dcs

dl
¼ 0;

du
dl
¼ 0 ð21Þ

where d
dl is the derivative normal to the lateral surface of the cell.

At the inclusion surface the boundary conditions are recei-
ved from the physical requirements as follow: continuity of
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temperature and electrical potential, conservation of heat and
water, maintenance of the ice purity.

Those requirements give the following two relations for the
temperature T:

Tjr¼R�0 ¼ Tjr¼Rþ0 ð22Þ

� k1
@T
@r

����
r¼R�0

� �k2
@T
@r

����
r¼Rþ0

� �
¼ jv i cos h=Vi ð23Þ

where r; h are spherical co-ordinates.
The water and solute matter fluxes satisfy the equations as

follows:

jwrjr¼Rþ0 ¼ v i cos h=Vi ðmass balanceÞ ð24Þ
jkrjr¼Rþ0 ¼ 0; k ¼ 1;2 ðforeign matter rejectionÞ ð25Þ

By symmetry, the ice velocity is parallel to Z-axis. That is reflected
in Eqs. (23), (24).

Taking into account of the definitions (9), (10), (16) and the
relations (24), (25), the transfer Eqs. (2)–(4) may be presented in
the following matrix form:

ðkÞ �

@p
@r
@u
@r
@cs
@r

0
BB@

1
CCA
��������

r¼Rþ0

¼ Vwv i cos h
Vi

�
1
0
0

0
B@

1
CA ð26Þ

where (k) is matrix of the transfer coefficients:

ðkÞ ¼
kpp kpe kps

kep kee kes

ksp kse kss

0
@

1
A.

Multiplying the expression (26) by the inverse matrix ð�kÞ gives
the differential equations for the thermodynamic potentials at the
inclusion surface:

@p
@r

����
r¼Rþ0

¼ �ksp
Vwv i cos h

Vi
ð27Þ

@u
@r

����
r¼Rþ0

¼ �kep
Vwv i cos h

Vi
ð28Þ

@cs

@r

����
r¼Rþ0

¼ �ksp
Vwv i cos h

Vi
ð29Þ

where �kpp;
�kep;

�ksp are elements of the inverse matrix ð�kÞ.
In addition, a value of the electrical potential at the ice – porous

medium boundary must satisfy the continuity condition:

ujr¼R�0 ¼ ujr¼Rþ0 ð30Þ

Assume, that the external force fields are absent. So the ice velocity
v i, that is in Eqs. (23), (27)–(29), is found from the conditions of the
mechanical equilibrium of the inclusions and the local phase equi-
librium of ice and water [6]

Vw

Vi
H0ðpRÞ �

j
T0Vi

H0ðTRÞ þ
cw

Vi
H0ðcsRÞ ¼ 0 ð31Þ

where H0 is a linear functional: H0ðf Þ ¼
R p

0 f ðhÞ cos h sin h dh; pR; TR,
and csR is liquid pressure, temperature, and molar concentration of
solution at the inclusion surface.

The equation set (19)–(23), (27)–(31) is the boundary condition
for the heat and mass transfer problem (1), (17), (18).

The problem will be solved analytically by the ‘‘anisotropic con-
ductivity” method and numerically by the modified ‘‘control vol-
ume” method.

3. Heat transfer problem

The heat problem was solved early by the ‘‘anisotropic conduc-
tivity” method [12]. The final results are presented below.
The temperature distribution TR at the inclusion surface and the
thermal flux Jq through the bases of the cell are following:

– infinite horizontal conductivity:

TRðhÞ¼
jv i

V iDk21
Rcoshþ rbT� jv i

V iDk21

� �
R

bþf1ð1�bÞ

ln 1þet cosh
1�et cosh

��� ���
ln 1þet

1�et

��� ��� þTm where Dk21 <0

jv i
V iDk21

Rcoshþ rbT� jv i
V iDk21

� �
R

bþf1ð1�bÞ �
arctgðet coshÞ

arctget
þTm where Dk21 >0

8>>>><
>>>>:

ð32Þ

Jq ¼ k2 �
jv i

ViDk21
� rbT� jv i

V iDk21

� �
� f1

bþ f1ð1�bÞ

	 

ð33Þ

– zero horizontal conductivity:

TRðhÞ ¼
k2

k1

R cos h
1þ et0j cos hj rbT � j

Vi

ð1� bj cos hjÞ
k2

v i

� �
þ Tm ð34Þ

Jq ¼ �k2IkrbT � k2jab
k1Vi

v iI3t ð35Þ

where Tm ¼ ðT1 þ T2Þ=2.

4. Mass transfer problem and transport coefficients

The problem consists in finding the matter flows of JV ; Js, and Je

through the bases of the cell at the boundary conditions (19)–(21).
The mass transfer in liquid phase is realized only in the element E2

(Fig. 2). At steady-state the matter balance for any volume confined
by the surface S produces the following relations:Z

S
jw þ

vi

V i

� �
� ndS ¼ 0 ð36Þ

Z
S

jk � ndS ¼ 0; k ¼ 1;2 ð37Þ

where n is unit vector normal to dS.
Solution of the problem by the ‘‘anisotropic conductivity” meth-

od is presented below.

4.1. Infinite horizontal conductivity

The thermodynamic potentials do not depend on the horizontal
co-ordinates due to the anisotropic conductivity.

In the range of z 2 ½�b=2;�R� and ½R; b=2� the medium is homo-
geneous. In direction of Z-axis the mass flows of jV ; js, and je are
constant and equal to the flows of JV ; Js, and Je through bases of
the cell. The equations may be written in the difference form:

JV

Je

Js

0
B@

1
CA ¼ 2

b� 2R
� ðkÞ �

p01 � p1

u01 �u1

c0s1 � cs1

0
B@

1
CA ð38Þ

JV

Je

Js

0
B@

1
CA ¼ 2

b� 2R
� ðkÞ �

p2 � p02
u2 �u02
cs2 � c0s2

0
B@

1
CA ð39Þ

where ðp01; c0s1;u01Þ and ðp02; c0s2;u02Þ are pressure, concentration, and
electrical potential in sections z ¼ �R and z ¼ R accordingly.

Summing and subtracting of (38) and (39) gives the following
relations:

1
2

p01 þ p02
u01 þu02
c0s1 þ c0s2

0
B@

1
CA ¼ 1

2

p1 þ p2

u1 þu2

cs1 þ cs2

0
B@

1
CA �

pm

um

csm

0
B@

1
CA ð40Þ

JV

Je

Js

0
B@

1
CA ¼ 1

ð1� bÞ � ðkÞ �
rbp

rbu

rbcs

0
B@

1
CA� 1

ð1� bÞ � ðkÞ �
rbp0

rbu0

rbc0s

0
B@

1
CA ð41Þ
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In order to determine the explicit form of the column
rbp0

rbu0
rbc0s

0
@

1
A, the

filtration, diffusion, and electrical conductivity problems must be
solved in the region of z 2 ½�R;R�.

Let us consider a cell volume confined by the lateral sides and of
the cell, its bottom, and the horizontal section intersecting Z-axis
in the point of z ðjzj < RÞ (Fig. 3). Applying Eqs. (36), (37) to the se-
lected volume and having in view the definitions (9)–(11) gives

v i

V i
ðSa � S2ðzÞÞ þ

jV ðzÞ
Vw

S2ðzÞ �
JV

Vw
Sa ¼ 0 ð42Þ

jeðzÞS2ðzÞ ¼ JeSa ð43Þ
jsðzÞS2ðzÞ ¼ JsSa ð44Þ

where S2ðzÞ is area of the fine-pored medium E2 in the horizontal
section z : S2ðzÞ ¼ Sa � pðR2 � z2Þ.

Transforming the equations of (42)–(44) and representing the
result in the matrix form gives:

jV ðzÞ
jeðzÞ
jsðzÞ

0
B@

1
CA ¼ Sa

S2ðzÞ
�

JV

Je

Js

0
B@

1
CAþ v iVw

Vi
� 1� Sa

S2ðzÞ

� �
�

1
0
0

0
B@

1
CA ð45Þ

Substituting jV ; js, and je in (45) from (2)–(4) and multiplying the
resultant expression by the inverse matrix ð�kÞ gives the differential
equations for the potentials of p; cs;u

dp
dz
du
dz
dcs
dz

0
BB@

1
CCA ¼ Sa

S2ðzÞ
� ð�kÞ �

JV

Je

Js

0
B@

1
CAþ v iVw

Vi
� 1� Sa

S2ðzÞ

� �
� ð�kÞ �

1
0
0

0
B@

1
CA

ð46Þ

Integrating (46) with respect to z from -R to R gives the required
column:

rbp0

rbu0

rbc0s

0
B@

1
CA ¼ b

f2
� ð�kÞ �

JV

Je

Js

0
B@

1
CAþ v iVwb

Vi
� 1� 1

f2

� �
� ð�kÞ �

1
0
0

0
B@

1
CA ð47Þ

The explicit form for the matter fluxes follows from the solution of
the equation set of (41) and (47):

JV

Je

Js

0
B@

1
CA ¼ fw � ðkÞ �

rbp

rbu
rbcs

0
B@

1
CAþ v iVw

Vi
ð1� fwÞ �

1
0
0

0
B@

1
CA ð48Þ

The expression (48) contains the unknown velocity v i. In order to
determine the value of v i the thermodynamic potentials of T; p; cs
Z

0R
θ

 jV, je, js

p2
', ϕ2

', c'
s2

E2

E1

Sa

 p2, ϕ2, cs2

vi

p1
', ϕ1

', c'
s1

 p1, ϕ1, cs1

z
S2

Fig. 3. Scheme of matter fluxes through the cell with infinite horizontal
conductivity.
at the inclusion surface are needed to know. The temperature distri-
bution is written earlier (Eq. (32)). Let us find the rest.

First of all, integrate Eq. (46) with respect to z from 0 to z:

pðzÞ� pm

uðzÞ�um

csðzÞ � csm

0
B@

1
CA¼ RFðzÞ � ð�kÞ �

JV

Je

Js

0
B@

1
CAþ v iVw

Vi
� ðz� RFðzÞÞ � ð�kÞ �

1
0
0

0
B@

1
CA
ð49Þ

where FðzÞ ¼ Sa
R

R z
0

df
S2ðfÞ

.
Substituting the flows JV ; Je; Js from Eq. (48) in Eq. (49) and

assuming z ¼ R cos h gives the desired values:

pRðhÞ
uRðhÞ
csRðhÞ

0
B@

1
CA ¼ RfwFðR cos hÞ �

rbp

rbu
rbcs

0
B@

1
CAþ v iV iR

Vi
� ðcos h� fwFðR cos hÞÞ

� ð�kÞ �
1
0
0

0
B@

1
CAþ

pm

um

csm

0
B@

1
CA ð50Þ

The properties of the functional H0 as follows: H0ðconstÞ ¼ 0;
H0ðcos hÞ ¼ 2

3 ;H0ðFÞ ¼ fp
fw

enable to find the value of H0 at the poten-
tials of pR;uR; csR (50):

H0

pRðhÞ
uRðhÞ
csRðhÞ

0
B@

1
CA ¼ Rfp �

rbp

rbu
rbcs

0
B@

1
CAþ v iVwR

Vi
� 2

3
� fp

� �
� ð�kÞ �

1
0
0

0
B@

1
CA
ð51Þ

Calculating the value H0 at the temperature function TRðhÞ (32)
gives:

H0ðTRÞ ¼ ftRrbT þ 2
3
� ft

� �
jRv i

V iDk21
ð52Þ

Substituting the appropriate values H0 from (51), (52) in (31) gives
the ice velocity v i:

v i ¼ �xp1rp�xt1rT �xs1rcs ð53Þ

where xp1 ¼ Vw
Vi

fp
den1

; xt1 ¼ � j
T0Vi

ft
den1

; xs1 ¼ cw
Vi

fp
den1

; den1 ¼ Vw
Vi

� �2

2
3� fp
� ��kpp þ j

Vi

� �2 ðft�2=3Þ
T0Dk21

þ cwVw

V2
i

2
3� fp
� ��ksp. The replacement of the

value v i in Eqs. (33) and (48) by the right side of Eq. (53) leads to
the required dependence between the fluxes and the thermody-
namic forces:

JV

Je

Js

Jq

0
BBB@

1
CCCA ¼

Cpp Cpe Cps Cpq

Cep Cee Ces Ceq

Csp Cse Css Csq

Cqp Cqe Cqs Cqq

0
BBB@

1
CCCA
rbp

rbu
rbcs

Xq

0
BBB@

1
CCCA ð54Þ

where Xq ¼ rbT
T0

and C-coefficients as follows:

Cpp ¼ kppfw �
Vw

Vi
abfpxp1; Cpe ¼ kpefw; Cps ¼ kpsfw �

Vw

Vi
abfpxs1;

Cpq ¼ �
Vw

Vi
abfpxt1T0

Cep ¼ kepfw; Cee ¼ keefw; Ces ¼ kesfw; Ceq ¼ 0
Csp ¼ kspfw; Cse ¼ ksefw; Css ¼ kssfw; Csq ¼ 0 ð55Þ

Cqp ¼
j
Vi

abftxp1; Cqe ¼ 0; Cqs ¼
j
Vi
� abftxs1;

Cqq ¼
j
Vi
� abftxt1 � k2fq

� �
T0

The direct verification shows that the C-coefficients (55) obey
the relations similar Eqs. (5), (6) i.e. the Onsager reciprocal rela-
tions are valid for the system considered.
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4.2. Zero horizontal conductivity

The streamlines of the mass fluxes are parallel to Z-axis because
of the anisotropy. Find the values of the mass flows across the
bases of the cell and the pressure and concentration distribution
at the ice surface.

Introduce into consideration the cylindrical co-ordinate system.
In the region of r > R the medium is homogeneous (Fig. 4), there-
fore the z-components of the fluxes do not depend on z co-ordi-
nate. The values of jV2; je2; js2 may be expressed in terms of the
potential gradients (2)–(4):

jV2

je2

js2

0
B@

1
CA ¼ ðkÞ �

rbp

rbu
rbcs

0
B@

1
CA ð56Þ

In the region of r < R two conditions of the solute rejection and the
water continuity lead to the following relation:

jV1

je1

js1

0
B@

1
CA ¼ Vwv i

V i
�

1
0
0

0
B@

1
CA ð57Þ

The average matter fluxes across the bases of cell are defined by the
ordinary way:

JV
Je
Js

0
@

1
A ¼ a

jV1
je1
js1

0
@

1
Aþ ð1� aÞ

jV2
je2
js2

0
@

1
A

¼ ð1� aÞðkÞ �
rbp
rbu
rbcs

0
@

1
Aþ a

Vwv i

V i
�

1
0
0

0
@

1
A ð58Þ

Let us turn to the second problem defining the liquid pressure and
the solution concentration at the inclusion surface.

Select a thin cylindrical layer Dr (Fig. 4) and write the transfer
Eqs. (2)–(4) for the upper and lower fine-pored columns:

jV1

je1

js1

0
B@

1
CA ¼ 1

h2
ðkÞ �

p01 � p1

u01 �u1

c0s1 � cs1

0
B@

1
CA;

jV1

je1

js1

0
B@

1
CA ¼ 1

h2
ðkÞ �

p2 � p02
u2 �u02
cs2 � c0s2

0
B@

1
CA
ð59Þ

The values of p01;p
0
2; c

0
s1; c

0
s2 constitute the potentials of pR and csR

(Fig. 4). Multiplying Eq. (59) by the inverse matrix ð�kÞ, taking into
account of Eq. (57), and presenting the value h2 in terms of R and
h gives the explicit form of the required potentials

pRðhÞ ¼
p2 � Vw

Vi

�kppv iR 1
b � cos h
� �

; 0 6 h 6 p
2

p1 þ Vw
Vi

�kppv iR 1
b þ cos h
� �

; p
2 6 h 6 p

8><
>: ð60Þ
csRðhÞ ¼
cs2 � Vw

Vi

�kspv iR 1
b � cos h
� �

; 0 6 h 6 p
2

cs1 þ Vw
Vi

�kspv iR 1
b þ cos h
� �

; p
2 6 h 6 p

8><
>: ð61Þ

Calculation of the functional H0 at the values of pR; csR; TR;, defined
by Eqs. (60), (61) and (34), produces the following result:

H0ðpRÞ ¼
R
b
rbp� Vw

Vi

�kppv i 1� 2
3

b

� �� �
ð62Þ

H0ðcsRÞ ¼
R
b
rbcsR �

Vw

Vi

�kspv i 1� 2
3

b

� �� �
ð63Þ

H0ðTRÞ ¼
k2

k1
R I3trbT � jv i

V ik2
ðI3t � bI4tÞ

� �
ð64Þ

Substituting Eqs. (62)–(64) in the condition of the mechanical and
thermodynamic equilibrium (31) gives the ice velocity v i:

v i ¼ �xp0rbp�xt0rbT �xs0rbcs ð65Þ

where xp0 ¼ Vw
Vi

1
den0

; xt0 ¼ � jk2
T0Vik1

bI3t
den0

; xs0 ¼ cw
Vi

1
den0

den0 ¼ �
Vw

Vi

� �2

1� 2
3

b

� �
�kpp þ

j
Vi

� �2 bðI3t � bI4tÞ
T0k1

� cwVw
�ksp

V2
i

1� 2
3

b

� �
:

Substitution of the value v i (51) in Eqs. (35) and (58) produces the
heat and mass flows across the basis of the cell in the form (54) with
the C-coefficients, as follows:

C0
pp ¼ ð1� aÞkpp � a

Vw

Vi
xp0; C0

pe ¼ ð1� aÞkpe;

C0
ps ¼ ð1� aÞkps � a

Vw

Vi
xs0;

C0
pq ¼ �a

Vw

Vi
T0xt0;

C0
ep ¼ ð1� aÞkep; C0

ee ¼ ð1� aÞkee; C0
es ¼ ð1� aÞkes; C0

eq ¼ 0;

C0
sp ¼ ð1� aÞksp; C0

se ¼ ð1� aÞkse; C0
ss ¼ ð1� aÞkss; C0

sq ¼ 0;

ð66Þ

C0
qp ¼

k2j
k1Vi

ab � I3txp0; C0
qe ¼ 0; C0

qs ¼
k2j
k1Vi

ab � I3txs0;

C0
qq ¼

k2j
k1Vi

ab � I3txt0 � k2Ik

� �
T0;

Those satisfy the Onsager reciprocal relations.
The problem of heat and mass transfer is solved by the ‘‘aniso-

tropic conductivity” method. It was found the extreme transfer
coefficients, those define an range of variable. The transfer coeffi-
cients of the cell with the isotropic elements fall into the range.
The main postulate of non-equilibrium thermodynamics, namely,
the Onsager reciprocity principle turns out to be valid for the por-
ous media with phase transformations.

5. Results

In this section it is presented some properties of the model
biporous medium with the ice inclusions. All values are received
by two methods. The first method is given in details. Essence of
the modified control volume method is presumed to publish
elsewhere.

The elementary cell (Fig. 2) is a cube. The fine-pored medium E2

is saturated by the aqueous solution of NaCl, that is supposed to be
ideal. In this case it is valid the following relation: cw ¼ �iRgTVw; i –
isotonic factor, i ¼ m1 þ m2. The thermal conductivity of the ele-
ments E1 and E2 are k1 ¼ 2:2 W m�1 K�1; k2 ¼ 1:54 W m�1 K�1 and
the typical values of the diffusion constants in the porous medium
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are taken from the paper [8]: DNa ¼ 4� 10�10 m2 s�1 and
DCl ¼ 6� 10�10 m2 s�1.

The coefficients of Kh;Kos;Ke in Eq. (16) are not independent. For
example, the coefficient of Ke is practically equal to zero for the
monodisperse soils with Kh > 10�6 m3 s kg�1. With decreasing
the soil hydroconductivity the value of Ke increases, reaches a max-
imum, and further, tends to zero [10]. In the region of the small
values Kh that dependence of KeðKhÞ, constructed from data by
H.W. Olsen [13] for kaolinite clay, has the following form:

Ke ¼ jeh

ffiffiffiffiffiffi
Kh

p
where jeh ¼ 1

100 kg
1
2 m1

2 V�1 s�3
2.

Regarding the coefficient Kos it should be point out that the
experiment gives the reflection or osmotic efficiency coefficient,
r [14–16]

r ¼ Dp
Dp

����
jv¼je¼0

ð67Þ

where Dp ¼ iRgTDcs.
The value of r for kaolinite clay is defined from the experimen-

tal data by H.W. Olsen [13] (Fig. 5). The experimental points is
approximated the following function:

r ¼ jes=
ffiffiffiffiffiffi
Kh

p
where jes ¼ 10�8 m3

2 s1
2 kg�

1
2.

Express the coefficient of Kos in terms of the measured values.
The equations of (2) and (3) at Xq ¼ 0 and jV ¼ je ¼ 0 lead to the
following set:

kpprpþ kperuþ kpsrcs ¼ 0
keprpþ keeruþ kesrcs ¼ 0

Eliminating the value ru from the last set and using the explicit
form of the k-coefficients (12), (13) with the definition (67) gives
the following relation for the coefficient of Kos:

Kos ¼
csriRgTkuKh � kDKe

csku þ K2
e

Kh

In the present paper, all calculation results are received at the con-
stant r equal to 0.05.

5.1. Electroosmosis

Electroosmosis is the solution flow through the porous medium
induced by the electrical field. The quantitative characteristic of
the effect is the coefficient before the electrical potential gradient
in Eq. (11). Appearing the ice changes the porous medium proper-
ties. Compare the electroosmotic properties of the fine-pored med-
ium and the biporous medium with the ice inclusions. Define for
that the following ratio:

dpe ¼ Cpe=kpe ð68Þ

Substituting in Eq. (68) the C-coefficients from Eqs. (55) and
(66) gives the explicit form of the value dpe for two cells:

– zero horizontal conductivity:

dpe ¼ 1� a

– infinite horizontal conductivity:

dpe ¼ fw

The ice presence impairs the electroosmotic capability of the
porous medium (Fig. 5). The ice is impermeable to foreign matter,
immobile relative to the medium framework (see Eqs. (53), (65)),
and, therefore, is a barrier to ion transfer.

5.2. Streaming potential

Streaming potential is electrical field in porous medium, pro-
duced by the liquid flow through the medium. Let us characterize
the potential by the ratio l between the induced potential differ-
ence and the pressure drop along the body at Je ¼ rbcs ¼ Xq ¼ 0:

Du ¼ lDp

In according to the second equation of the set (54) the coefficient l
is expressed in terms of the C-coefficients;

l ¼ Cep=Cee

Compare the streaming potentials of the fine-pored medium and
the biporous medium with the ice inclusion by means of the non-
dimensional parameter of dl:

dl ¼
Cepkee

Ceekep
ð69Þ

Substituting the C-coefficients in Eq. (69) from the sets (55) and (66)
gives the identical result for both cells:

dl ¼ 1

The numerical calculations confirm that result.
The presence of ice in porous medium has no effect on the value

of the streaming potential. Though the ice moves relative to the
fine-pored framework, but that does not take part in the ion trans-
fer through the medium.

5.3. Thermoelectric polarization

Electrical polarization induced by the temperature gradient will
be found for the closed cell ðJV ¼ Js ¼ Je ¼ 0Þ.

An equation set in three variables of rbp;rbcs;rbu follows
from the general relation of (54):

ðCmÞ
rbp

rbu
rbcs

0
B@

1
CA ¼ �Xq

Cpq

Ceq

Csq

0
B@

1
CA ð70Þ

where ðCmÞ ¼
Cpp Cpe Cps

Cep Cee Ces

Csp Cse Css

0
@

1
A.

Multiplying the expression (70) by the inverse matrix ðCmÞ and
taking into account of the equation Ceq ¼ Csq ¼ 0 (see Eqs. (55) and
(66)) gives the explicit form of the required gradients
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rbp

rbu
rbcs

0
B@

1
CA ¼ �CpqXqðCmÞ

1
0
0

0
B@

1
CA ð71Þ

The value of the thermoelectric potential follows from Eq. (71):

Du
DT
¼ �

CpqCm
ep

T0
ð72Þ

The calculation results are presented in Fig. 6. The value of the
potential increases with decreasing the solution concentration, de-
pends weakly on the hydroconductivity of the fine-pored medium
E1, and reaches the value of 1 V/K at the solution concentration
10�4 mol l�1.

If the fine-pored medium E1 has not the osmotic and electroos-
motic properties, than the potential value is under 250 mV/K [6].
The thermoelectric potential in the graphs of the referenced paper
is a need to write with the negative sign. The double layer mecha-
nism has the essential effect at the low concentration of the
solution.

6. Conclusions

The model porous medium investigated in the present and
other works [6,11,12] is a system with coupled phase transforma-
tions. The phase transformations intensify the cross effects in the
systems. For example, the thermoelectric capacity of the medium
may be increased more than an order in comparison with the por-
ous body without phase transformations.

The role of the charge separation at the freezing boundary is not
considered due to the thickness of the double electrical layer is less
than 1 mm [17]. That mechanism must be taken into account if the
magnitude of the ice inclusion is comparable with the double layer
size. In this case the ice may transport ions, and in that way the
mass transfer through the medium is taking new features.
This work is made in the framework of the fundamental inves-
tigation program of RAS presidium (Project 16.4.2) and the integra-
tion project of SB RAS No. 122.
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